- 电脑设置、python 入门
- NoMachine, ssh, python, conda, jupyter
- 文件夹操作
pathlib
, 图片操作skimage
- 数据增强 (data augmentation):
imgaug
- TensorBoard
- 机器学习简介
- Linear Classifier
sklearn**.**model_selection**.**train_test_split()
- Stochastic gradient descent
- TensorFlow:
tensorflow_addons as tfa
tfa.image.rotate()
,tf.image.random_flip_left_right()
- **
from** tensorflow.keras **import** Model
, **from** tensorflow.keras.models **import** Sequential
, **from** tensorflow.keras.layers **import** Input, Flatten, Dense, Activation, BatchNormalization, Conv2D, MaxPool2D, Softmax
tf**.**keras**.**losses**.**CategoricalCrossentropy()
,tf**.**keras**.**optimizers**.**Adam(lr**=**1e-3, clipnorm**=**0.001)
linear_classifier **=**``Model(...)
,linear_classifier.compile()
,linear_classifier.fit()
,linear_classifier.predict()
- 深度学习简介
- Perceptron
- Perceptron-based XOR gate
- decision boundary of your model:
np.meshgrid
- 图像恢复 (image restoration)
- CARE network
- Noise2Nosie, Noise2Void
- 图像翻译 (image translation)
- micro-DL: a tool to generate and train U-net from config files.
- 图像语义分割 (image semantic segmentation): 比较详细,前两节有点水了。
- **
from** PIL **import** Image
, **import** imageio
, **from** torchvision **import** transforms
- **
from** torch.utils.data **import** Dataset, DataLoader
, **import** torch.nn **as** nn
, **from** torch.nn **import** functional **as** F
, **from** torch.utils.tensorboard **import** SummaryWriter
, - U-net on PyTorch
- **
- 图像实例分割 (instance segmentation)
- Foreground segmentation:
- Receptive Field of View: The term is borrowed from biology where it describes the "portion of sensory space that can elicit neuronal responses when stimulated" (wikipedia). Each output pixel can look at/depends on an input patch with that diameter centered at its position. Based on this patch, the network has to be able to make a decision about the prediction for the respective pixel.
- Early Stopping to avoid overfitting: define an
EarlyStopping
class
- Instance Segmentation:
- Ideas:
- Three-class model (foreground, background, boundary),
- Distance transform (label for each pixel is the distance to the closest boundary),
- Edge affinity (consider not just the pixel but also its direct neighbors, predicts the probability that there is an edge, this is called affinity.) 听的时候懂了,回来看的时候没太看懂
- Metric learning (learns to predict an embedding vector for each pixel.)
- Ideas:
- Tile and Stitch:
- 当需要处理的图片过大时,将图片切分成多个小图,分别预测之后拼接在一起。
- 文中说图片尺寸不是 某个参数的整数倍的时候拼贴结果会不连续,但是代码注释中说等于这个整数倍的时候会不连续,晕。
- https://arxiv.org/pdf/2101.05846.pdf
- 一个实例,epithelia cells
- Foreground segmentation:
- 失败模式:极其之水,就是科普了一下训练参数错误的后果,以及一点对抗学习的内容
- 追踪:比较水,因为机器学习追踪的运算量极大,且主讲人感觉就是来做广告的,所以就直接用 CoLab 体验了一下就完事了。(就这还加州理工呢~)
- 知识提取:
- 前面的基本上是从像素到像素的映射,这里的知识提取是从图片到标签的映射。
- CycleGAN
- Create a balanced Dataloader
本文收录于以下合集: